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Abstract

Isolation from disturbances, particularly from foundations of high precision instruments, is achieved
through either passive or active vibration control systems. Although a passive isolation system offers a
simple and reliable means of protecting precision equipment from a vibration environment, it has
performance limitations since its controllable frequency range is limited. An effective method for reducing
an oscillation is by using an active vibration isolation system, which allows control of the dynamic rigidity
of shock absorbers. In this paper, by considering the characteristics of the disturbing influences acting upon
vibro-isolated objects, the dynamic characteristics of the AVIS device and control restriction, new optimal
and quasi-optimal control algorithms are proposed. The characteristics of the new quasi-optimal active
vibration isolation system proposed in the paper are investigated via experiments. It is shown that the
adopted quasi-optimal active vibration isolation system can improve performance using in situ
measurements.
r 2005 Published by Elsevier Ltd.
1. Introduction

The intensity of vibration in present day instruments significantly affects the operational
reliability and performance of systems, such as high precision equipment, machine-tools,
measuring instruments and test facilities.
see front matter r 2005 Published by Elsevier Ltd.
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The accuracy of measurement, validity of tests and quality of alignment are influenced by
foundation disturbances. An effective method for reducing vibration is by using an active
vibration isolation system (AVIS), which allows the control of the dynamic rigidity of shock
absorbers [1–3].
A significant improvement in the vibro-isolation quality can be achieved by using a vibro-

isolation system controlled by optimised algorithms. Despite a great amount of research work
carried out in this field, there are a number of problems associated with the system. When
developing AVIS optimised control algorithms, it is necessary to model the characteristics of the
disturbing influences acting upon vibro-isolated objects with the dynamic characteristics of the
AVIS device. This problem has not been previously solved.
It should be noted that the disturbances, which acts upon vibro-isolated objects, has random

sequences. In recent studies [4], the optimal control of randomly disturbed objects was
investigated by taking into account the characteristics of the disturbances.
The principal aim of this present work is to synthesise and to study the properties and beneficial

effects of the new optimal AVIS. In general, an AVIS is used in combination with an ordinary
uncontrollable actuator for wide band vibro-isolation, providing suppressions of the high-
frequency oscillation [5,6]. Spring dampers, liquid dampers, pneumatic dampers and electro-
magnetic dampers as well as others are used as actuating mechanisms. From a mathematical
point of view, the represented device of AVIS could be considered as an actuator with an isolated
object mass.
In this case, the schematic representation of the control object is shown in Fig. 1. The object is

an equivalent mass of a vibro-isolated object placed on a platform with an actuator, the actuating
mechanism being a controlled pneumosupport. Fig. 2 shows a picture of the controlled
pneumosupport, which consists of two chambers. The upper chamber (2) is made of a rubberized
tire fabric and is flexible; the lower chamber is a rigid one. The chambers are separated by a
diaphragm (3) with throttle openings (4). Owing to the electromagnetic drive (6), rigidly connected
to the diaphragm, the upper chamber pressure varies and, as a result, the stress acting upon the
vibro-isolated object is relieved.
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Fig. 1. Controlled pneumosupport.



ARTICLE IN PRESS

Fig. 2. Controlled pneumosupport.
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It will be shown that by using optimal control algorithms and the AVIS device, the AVIS may
be designed to improve the operational reliability and performance of high precision instruments
via measurement in situ.
The subsequent discussion concerns the probabilistic disturbing process that is classified as a

normal Gaussian distribution. The hypothesis of a normal Gaussian distribution is based on real
values of random processes, which are the effects of a large number of factors. The summation of
these unconnected and weakly connected factors tends to be within the limits of the normal
distribution.
The normal random process correlation functions can be approximated by the cosine

exponential function as follows:

RjðtÞ ¼ Dje
�at cosðbtÞ, (1)

where Dj is the variation, a is the damping constant and b is the time period of the function.
It is useful for optimisation purposes to take the minimum of the square hz20i from the deviation

of the output z0. This choice is based on the minimisation of the mean square hz20i and its
variation, which are both specified for normal distribution, ensuring minimisation of the
inequality:

jz0ðtÞj4zmax, (2)

where zmax is the undesired deviation of z0.
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The adopted optimisation criterion must be completed by the requirement of automatic control
system stability and control signal restriction.
The papers by Petrov [4] assumed the synthesis of the method of automatic control system by

mean square deviation subject to control signal restriction on NU , the control power:

hu20ipNu. (3)

According to the variation evaluation, the minimisation of hz0i subject to the inequality
condition (3) is equivalent to the function:

J ¼ l0hx2
0i þ hu

2
0i, (4)

where l0 is the Lagrange coefficient, hx2
0i is the mean square value of disturbance and hu2

0i is the
mean square value of the control signal.
The minimum criterion is obtained from positive values of the Lagrange coefficient, marked

l0 ¼ m2, since it can be represented as follows:

J ¼ m2hx2
0i þ hu

2
0i. (5)
2. Optimal synthesis of active vibration isolation systems for stationary disturbances

Generally, to solve the task of optimisation by the use of linearisation models the system block-
diagram shown in Fig. 3 is used.
The dynamic characteristics of the AVIS device by a control link (i.e. by a control

input signal) are described with differential equations the nth order, which can be expressed in
the form

A0ðdÞx0ðtÞ ¼ B0ðdÞuðtÞ, (6)

where d is the symbol of differentiation d ¼ d=dt, and polynomials

A0ðdÞ ¼ a0d
n
þ a1d

n�1
þ � � � þ an�1dþ an,

B0ðdÞ ¼ b0d
m
þ b1d

m�1
þ � � � þ bm�1dþ bm

are differential operators, where nXm.
The AVIS undergoes stationary disturbances jðtÞ (Fig. 3), which are classified as a normal

Gaussian distribution. The mathematical model of disturbances is approximated by the
correlation function (1). The differential equations for the response of the AVIS device to a
1 

A0(d) 
B0(d) 

 ϕ(t)

u(t)
Wreg(d) 

x0(t)

Fig. 3. Structure circuit of the optimal active vibration isolation system investigated.
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disturbance can be represented in the following form:

A0ðdÞxðtÞ ¼ jðtÞ. (7)

The control system is made into a closed-loop through a regulator, which has the dynamic
characteristics and represented in symbolic form as follows:

W regðdÞ ¼
BregðdÞ

AregðdÞ
¼

breg0d
n
þ breg1d

n�1
þ � � � þ bregn�1dþ bregn

areg0d
n
þ areg1d

n�1
þ � � � þ aregn�1dþ aregn

. (8)

The structure and parameters of the regulator are to be defined while solving the AVIS
optimization problem using the quality criterion (5). The closed-loop system equation, when the
numerator polynomial of the AVIS device BðdÞ ¼ 1, takes the form:

½A0ðdÞ �W regðdÞ�x0ðtÞ ¼ jðtÞ. (9)

To solve this problem one can use Fourier transformation on the above equation to obtain:

½A0ðioÞ �W regðioÞ�x0ðioÞ ¼ jðioÞ. (10)

The mean square value of the disturbance hx2
0i of the output of the closed-loop system is defined

by the power spectral density (PSD) SjðtÞ and amplitude of the frequency characteristics of the
closed-loop system. It is described by

hx2
0i ¼

Z 1
0

SjðoÞ
1

jA0ðioÞ �W regðioÞj2
do. (11)

In a similar way we define the mean square value of the control signal and the optimal criterion
will be expressed in the following way:

J ¼ m2hx2
0i þ hu

2
0i ¼

Z 1
0

SjðoÞ
m2 þ jW regðioÞj2

jA0ðioÞ �W regðioÞj2
do. (12)

Thus the optimal criterion depends on the function W regðioÞ and hence o, the frequency. The
task of the optimal regulator reduces to the variation problem of defining a function which gives a
minimum value for Eq. (5). To take into account the requirement of system stability, in Eq. (5) a
transition from variable o to variable p ¼ io gives

J ¼
1

2j

Z 1
0

SjðpÞ
m2 þW regðpÞW regð�pÞ

½A0ðpÞ �W regðpÞ�½A0ð�pÞ �W regð�pÞ�
do. (13)

Supposing that the power density spectrum SjðpÞ is an even order fraction (rational) function of
the variable p, then:

SjðpÞ ¼
a0p

2g þ a1p
2g�2 þ � � � þ ag

b0p2q þ b1p2q�2 þ � � � þ bq

. (14)

This function can be decompose into symmetrical multipliers

SjðpÞ ¼ S1ðpÞS1ð�pÞ. (15)

Substituting the expression for SjðpÞ into formula (5), the optimal criterion, we solve this
variation task. However, only those dJ values are admissible which do not invalidate the stability
condition for closed-loop systems.
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The optimal regulator structure and parameters can be determined on the bases of the following
algorithm stages:
1.
 Factorisation of the PDS equation of disturbances:

SjðpÞ ¼ S1ðpÞS1ð�pÞ. (16)
2.
 Factorisation of the polynomial:

A0ðpÞA0ð�pÞ þm2 ¼ GðpÞGð�pÞ. (17)
3.
 Decomposition of fractions:

A0ð�pÞ

Gð�pÞ
S1ðpÞ ¼M0ðpÞ þMþðpÞ þM�ðpÞ, (18)

where M0ðpÞ is the integer polynomial; MþðpÞ is the fraction with positive poles in the left half-
plane; M�ðpÞ the fraction with negative poles in the right half-plane.
4.
 Building the auxiliary function:

QðpÞ ¼
M0ðpÞ þMþðpÞ

GðpÞSðpÞ
. (19)
5.
 Definition of the optimal regulator transfer function:

W regðpÞ ¼ A0ðpÞ �
1

QðpÞ
. (20)

Using the above definitions of the algorithm, synthesis of the regulator is possible, in view of the
AVIS device transfer function in the form:

WdevðpÞ ¼
B0ðpÞ

A0ðpÞ
¼

1

ðT2
1 þ T2pþ 1Þ

. (21)

It should be noted that Eq. (21) can be used to describe dynamic characteristics of AVIS
devices, both in active and passive control systems. As mentioned above, the AVIS device can be
represented as an actuator with a vibro-isolated object mass. Liquid dampers, pneumatic
dampers, electromagnetic dampers, etc. can be used as actuating mechanisms. Amplitude–fre-
quency characteristics of the mechanisms can be approximated by transfer function (18) as it is
shown in Refs. [1,5–7].
The mathematical model of the disturbances assume a random process with a correlation

function (1). This function corresponds with the following of PSD:

SjðpÞ ¼ Dj
2a
p

a2 þ b2 þ o2

ða2 þ b2 þ o2Þ � 4b2o2
. (22)

The factorisation of the PSD will take a value of Dj ¼ p=2a, since parameters of the
synthesised regulator are independent of the disturbance value. In the PSD Eq. (22) by changing
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variable p ¼ io, we can modify the numerator as follows:

a2 þ b2 � p2 ¼ ðbs0pþ bs1Þðbs0p� bs1Þ. (23)

Equating coefficients the same order of p we have: bs0 ¼ 1; bs1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
.

The denominator of this equation will be

ða2 þ b2 þ p2Þ
2
� 4b2p2 ¼ ðas0p

2 þ as1pþ as2Þðas0p
2 � as1pþ as2Þ.

Equations for as0, as1, as2 are defined after the open brackets and equating the coefficients
under the same order of p in the left and the right sides of the previous equation:
as0 ¼ 1; as1 ¼ 2a; as2 ¼ a2 þ b2. Subsequently, the decomposition of the PSD Eq. (22) will take
the form:

S1ðpÞ ¼
bs0pþ bs1

as0p2 þ as1pþ as2
; S1ð�pÞ ¼

bs0pþ bs1

as0p2 � as1pþ as2
. (24)

Having factorised polynomial (17) one can obtain:

GðpÞGð�pÞ ¼ ðT2
1 þ T2pþ 1ÞðT2

1 � T2pþ 1Þ þm2

¼ ðag0p
2 þ ag1pþ ag2Þðag0p

2 � ag1pþ ag2Þ. ð25Þ

Open brackets and equating the coefficients under the same order of p in the left and the right
sides we obtain the coefficients:

ag0 ¼ T2
1; ag2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
; ag1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T2

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
� T2

1 þ T2
2

q
. (26)

Thus

GðpÞ ¼ ag0p
2 þ ag1pþ ag2; Gð�pÞ ¼ ag0p

2 � ag1pþ ag2. (27)

To rewrite the equation for Eq. (18) taking into account Eqs. (21), (24) and (25)

A0ð�pÞ

Gð�pÞ
S1ðpÞ ¼

ðT2
1p

2 þ T2pþ 1Þðbs0pþ bs1Þ

ðas0p2 þ as1pþ as2Þðag0p2 � ag1pþ ag2Þ
. (28)

Taking into account that the denominator in this equation has a higher order than that of the
numerator, after decomposition of Eq. (18) in view of Eq. (28) we have: M0ðpÞ ¼ 0.
In order to define MþðpÞ and M�ðpÞ represent Eq. (28) as a summation of fractions with

undetermined coefficients C1, C2, C3 and C4 it is deduced that:

MþðpÞ þM�ðpÞ ¼
C1 þ C2p

as0p2 þ as1pþ as2
þ

C3 þ C4p

ag0p2 � ag1pþ ag2
. (29)

By reducing to a common denominator and by equating the numerators in the initial equation
(28) and modifying Eq. (29), we obtain:

ðT2
1 þ T2pþ 1Þðbs0pþ bs1pÞ

¼ ðC1 þ C2pÞðag0p
2 � ag1pþ ag2Þ þ ðC3 þ C4pÞðas0p

2 � as1pþ as2Þ. ð30Þ

Coefficients C1 and C2 are necessary for the forthcoming computations since they are the
elements of the equation for MþðpÞ. These can be defined, based on the following consideration.
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Supposing that operator p in Eq. (30) equates the root aS þ ibS of polynomial ðas0p
2 þ as1pþ as2Þ,

i.e. root of polynomial S1ðpÞ. Thus Eq. (30) is reduced due to the second component of Eq. (30)
being equal to zero.
Substituting the coefficients asi into Eq. (30) for computing the roots of second-order equation

with known values a and b of PSD, we have: as ¼ a and bs ¼ b.
Taking into account the above computations, after transformation (23), one can write:

T2
1ð3ab

2
� a3Þ þ ðbs1T

2
1 � T2Þða2 þ b2Þ � ð1� bs1T2Þaþ bs1 þ i½T2

1ð3ab� b2Þ

� 2abðbs1T
2
1 � T2Þ þ bð1� bs1T2Þ� ¼ C2ag0ð3ab

2
� a3Þ þ ðC1ag0 � C2ag1Þða2 þ b2Þ

� ðC2ag2 � C1ag1Þaþ C1ag2 þ i½C2ag0ð3ab
2
� a2Þ � 2abðC1ag0 � C2ag1Þ

þ bðC2ag2 � C1ag1Þ�.

Having equated real and imaginary parts of the latter identity and solving the simultaneous
equation we can define coefficients C1 and C2. They are described as follows:

C1 ¼
L1 � L2

L4 �D4
; C2 ¼

L1 � C1D2

L4 þD4
, (31)

where

L1 ¼ T2
1ð3ab

2
� a3Þ þ ðbs1T

2
1 � T2Þða2 þ b2Þ � ð1� bs1T2Þaþ bs1,

L2 ¼ T2
1ð3ab

2
� b2Þ � 2abðbs1T

2
1 � T2Þ þ bð1� bs1T2Þ,

L3 ¼
L1D3

D1
; L4 ¼

D2D3

D1
,

D1 ¼ ag0ð3ab
2
� a3Þ þ ag1ða2 þ b2Þ � ag2b; D2 ¼ ag0ða2 � b2Þ þ ag2,

D3 ¼ ag0ð3ab
2
� b3Þ þ ag12abþ ag2b; D4 ¼ 4ag0ag1ab

2.

Taking into account the defined equation for MþðpÞ and using Eqs. (24) and (25), auxiliary
function (13) takes the form

QðpÞ ¼
C1 þ C2p

ðag0p2 þ ag1pþ ag2Þðbs0pþ bs1Þ
. (32)

Based on Eq. (20), the transfer function of the optimal regulator can be modified as follows:

W regðpÞ ¼
br0p

3 þ br1p
2 þ br2pþ br3

ar0pþ ar1
, (33)

where

br0 ¼ T2
1C1 � ag0; br1 ¼ C1T2 þ C1T

2
1 � ag1 � ag0bs1; br2 ¼ C2 þ C1T2 � ag2 � ag1bs1,

br3 ¼ C1 � ag2bs1; ar0 ¼ C2; ar1 ¼ C1.

Software can be used that allows calculation of the parameters of the optimal regulator. Such a
program was developed according to the above assumptions and computations.
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For defining the mean square value of disturbance hx2
0i, in view of Fig. 3, it can be stated that

transfer function of the closed-loop system under the disturbance link as

WdisðpÞ ¼
x0ðpÞ

jðpÞ
¼

ArðpÞ

ArðpÞA0ðpÞ � BrðpÞ
. (34)

Having done the transformations, one can have

WdisðpÞ ¼
x0ðpÞ

jðpÞ
¼ KB

bc0pþ 1

ac0p3 þ ac1p2 þ ac2pþ ac3
, (35)

where

KB ¼
ar1

ar1 � br3
; bc0 ¼

ar0

ar2
; ac0 ¼

ar0T
2
1 � br0

ar0 � br3
,

ac1 ¼
ar1T

2
1 þ ar0T2 � br1

ar1 � br3
; ac2 ¼

ar1T2 þ ar2 � br2

ar1 � br3
; ac3 ¼ 1.

As for the disturbance, when going to the frequency domain for the square of the closed-loop
system amplitude–frequency characteristics obtain:

jWdisðpÞj
2 ¼

K2
Bðbc0o2 þ 1Þ

ð1� ac1o2Þ
2
þ ðac2o� ac0o3Þ

2
. (36)

The mean square value of disturbance hx2
0i is only calculated for certain values AVIS as follows:

hx2
0i ¼

Z 1
0

SjðoÞjWdisðioÞj2 do. (37)

The transfer function of the closed-loop system by the control link is

W conðpÞ ¼
U0ðpÞ

jðpÞ
¼

BrðpÞ

ArðpÞA0ðpÞ � BrðpÞ
. (38)

After substituting the transfer function (38) using appropriate equations and changing to the
frequency domain, the equation for the square amplitude–frequency characteristics can be
represented as

jW conðpÞj
2 ¼

ðbr1o2 � br3oÞ
2
þ ðbr0o3 þ br2oÞ

2

ðar1 � br3Þ½ð1� ac1o2Þ
2
þ ðac2o� ac0o3Þ

2
�
. (39)

The mean square value of control signal hu20i is calculated only for certain values of AVIS by
equation:

hu20i ¼

Z 1
0

SjðoÞjW conðioÞj2 do. (40)

According to the above equations, the parameters of the optimal regulator depend on the
characteristics of the disturbances and AVIS device, and also of the values of indefinite Lagrange
coefficient m2.
For defining the Lagrange coefficient m2

0 it is necessary to calculate the optimal regulator
parameters as well as the appropriate mean square values of the control signal hu20i and then we
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obtain the dependence hu2
0im

2. In view of the control signal restriction, the Lagrange coefficient is
determined due to this dependence. Hence optimal regulator characteristics are defined.
The choice of the control signal restriction is based on the following. The synthesised optimal

regulator operates in a linear zone, if the following is observed: UminoUoUmax.
By transition to relative values, these conditions reduce to the control signal restriction

magnitude: jU0jp1.
In normal cases, the algorithm of the optimal regulator is not linear and can be represented as

UðtÞ ¼

þ1 by U41;

UL by jU0jp1;

�1 by Uo1:

8><
>:

Naturally, the control signal value is different from the optimal value, but there is the tendency
to the optimal value if the regulator time period in the saturation zone is reduced and the less the
time period the stronger the tendency. When the disturbing process is classified as normal
Gaussian distribution jðtÞ and the regulator operates in the linear zone, then output signal Z0ðtÞ is
also classified in the linear zone. When the regulator operates in the saturation zone for a short
period of time there is insignificant distortion of the Gaussian distribution. The time period, when
jU0jp1 is observed, can be defined, in view of the normal distribution law, by the Laplace
integral:

F ðKU Þ ¼
2ffiffiffiffiffiffi
2p
p

Z ku

0

exp �
x2

2

� �
dx, (41)

where coefficient KU is defined from the condition

K2
uou2o1. (42)

Using Laplace integral tables, it is easy to define, for example, FðKU Þ ¼ 0:9, if KU ¼ 1:645.
Therefore, if KU ¼ 1:645, then the regulator is operated 90% of the complete time as linear, and

only 10% of the time as nonlinear. According to an analysis of real time operating influence on
the optimal criterion, the time operation of regulator is recommended to between the following
values: KUXð1:5 . . . 1:645Þ. This is the appropriate condition for nonlinear operation of the
regulator ð10 . . . 15%Þ of the time. This assumption permits a linear system with little distortion to
be obtained.
Additional attention should be given to the problem of the system stability under parameter

variations. It is known that there are cases when optimal, in mean square values, systems can lose
their stability at insignificant parameter variations. Such a class of optimal closed-loop systems
will be unstable if the denominator of auxiliary function (19) is equal to the order of equation
A0ðpÞ and also if the coefficients values coincide with the oldest order of operator p. Moreover, the
order of the numerator polynomial W regðpÞ in Eq. (20) is decreased by one compared to the
polynomials A0ðpÞ and F ðpÞ. Even at infinitesimal parameter variations the polynomial
coefficients with oldest orders of operator p become unequal. So the characteristic equation for
the closed-loop system can have roots with a positive imaginary part, i.e. the system will be
unstable. For the synthesised optimal system such a crucial situation does not occur, i.e. the
denominator order of QðpÞ and characteristic equation A0ðpÞ are different.
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For the AVIS stability, under parameter variations with the given PSD, there is a general
condition to stick to. This condition is represented as follows:

gXmþ q� 1, (43)

where m is the order of the AVIS denominator polynomial.
Consider the situation that the AVIS device has m ¼ 0. According to the mathematical

model (22), the coefficients g ¼ 1 and q ¼ 2. Therefore, the unequal equation (43) is
true and this guarantees stability of the system. This conclusion is confirmed by the follow-
ing analysis of sensitivity analysis to variation of AVIS device and disturbance
characteristics.
3. Appreciation of AVIS’S efficiency operation

For the AVIS device transfer function (21) and the mathematical model of the disturbances
(22), using specially developed software, the optimal regulator will be synthesised. The
computation will be carried out for several possible characteristics of the active vibration
isolation system AVIS device and disturbances. Base values take the following form: a ¼ 2;
b ¼ 20; T ¼ T1 ¼ 0:1 s; T2 ¼ 0:09 s.
In order to obtain the structure and parameters of the optimal regulator, we use the previous

algorithm to find the parameters of the closed-loop system, and characteristics of the mean square
values of control signal hu2i and disturbances hx2

0i, and values of criterion (5).
The correlation function is normalised by Dj, which allows us to receive parameters of hx2

0i and
hu2i in the relative range. Appropriate dependencies of hu2i from m2, and hx2

0i from m2 and also
criterion J (Eq. (5)) from m2 are represented in Figs. 4–6. As shown in Figs. 4 and 5 the point
m2 ¼ 0 corresponds to the absence of control signal hu2i, but at this time hx2

0i is a maximum. If the
coefficient m2 increases, the gain of the optimal regulator and control power increases as well.
When hu2i tends to one, hx2

0i tends to zero.
quasi-optimal regulator

optimal regulator 
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Fig. 4. Dependence of mean square value hu2i of control signal from Lagrange coefficient m2.
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Fig. 6. Dependence of adopted criterion J from Lagrange coefficient m2.
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Fig. 5. Dependence of mean square value hx2
0i of disturbance from Lagrange coefficient m2.
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According to the above control considering signal restriction, values of K2
U Eq. (42), can take

the form:

hu2ip
1

ð2:25 . . . 2:71Þ
¼ 0:37 . . . 0:45. (44)

The optimised system permits, by minimum control power, the suppression of maximum
disturbances subject to the restriction on control signal. The further increase of power does not
result in efficient suppression of disturbances. The increasing of power influences environmental
conditions. This can lead to overheating, as a result changing of time constant, and decreasing of
the efficiency of the vibro-isolation system can occur.
We can see from the computation, that values of Lagrange coefficient corresponds to m2p10. If

m2 ¼ 10, which corresponds to a control restriction of 0.4105, we have hx2
0i ¼ 0:1225. Thus, the

mean square value of the output of the closed-loop system with the optimal regulator is about
12% from disturbances (relative disturbances power is 1).
According to the experimental data [8] foundation displacements are about 25–30mm and the

vibro-isolated object displacements are reduced to 2–3mm. The optimal AVIS provides 8–10 time
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disturbance suppression and this ensures the required operational environment for high precision
instruments. Theodolite error, for example, when making a space point measurement, is about
25mm and accurate results cannot be obtained when the foundation disturbances are about 30mm.
However, the designed optimal AVIS provides accurate operation of such measuring facilities as
theodolite within the instrument error range. It is, then, possible to receive more accurate results.
The computations show that for the adopted m2 ¼ 10 the optimal regulator transfer function

will be represented as follows:

W regðpÞ ¼ �
0:833p3 þ 1:804p2 þ 4:820pþ 3:26

0:167pþ 2:056
. (45)

The minus sign in the transfer function shows that there is negative feedback in the closed-loop
system.
It should be noted, however, that for the adopted disturbance model, the defined optimal

regulator requires output deviation derivatives up to the third-order inclusive. With all this in
mind the optimal regulator practical feasibility, especially its re-tuning, presents a lot of technical
problems. Therefore, the quality characteristics attained under the optimal control are to be
considered as the best ones. On the basis of these best characteristics it is possible to assess the
properties of the quasi-optimal system with a simplified regulator.
Table 1

Results of computation the quality indices of quasi-optimal system in view of power spectrum density parameter b
variation

b=b0 hx2
0i hu2i J

0.5 0.0983 0.5147 1.105

0.55 0.0875 0.5146 1.040

0.6 0.0772 0.5102 0.974

0.65 0.0677 0.5021 0.908

0.7 0.0591 0.4913 0.846

0.75 0.0514 0.4787 0.787

0.8 0.0447 0.475 0.733

0.85 0.0388 0.469 0.684

0.9 0.0336 0.467 0.639

0.95 0.0294 0.4533 0.6

1 0.1267 0.4504 0.545

1.05 0.0226 0.4281 0.534

1.1 0.0199 0.4267 0.566

1.15 0.0176 0.426 0.481

1.2 0.0156 0.4161 0.46

1.25 0.0139 0.4157 0.44

1.3 0.0124 0.4086 0.423

1.35 0.0112 0.4009 0.408

1.4 0.0101 0.3937 0.394

1.45 0.0091 0.3871 0.382

1.5 0.0083 0.371 0.371
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Table 2

Results of computation the quality indices of quasi-optimal system in view of time constant T variation

T=T0 hx2
0i hu2i J

0.5 0.1375 0.7228 0.948

0.55 0.1363 0.6911 0.909

0.6 0.1352 0.6592 0.87

0.65 0.134 0.6271 0.831

0.7 0.1328 0.595 0.792

0.75 0.1316 0.5629 0.753

0.8 0.1304 0.5312 0.714

0.85 0.1294 0.4998 0.675

0.9 0.1281 0.4791 0.637

0.95 0.1279 0.4693 0.601

1 0.1267 0.4504 0.656

1.05 0.1246 0.4226 0.53

1.1 0.1235 0.396 0.497

1.15 0.1225 0.3708 0.466

1.2 0.1215 0.3470 0.436

1.25 0.1205 0.3245 0.408

1.3 0.1196 0.3035 0.381

1.35 0.1187 0.284 0.356

1.4 0.1179 0.2658 0.333

1.45 0.1171 0.2489 0.312

1.5 0.1164 0.2333 0.292

pneumosupports container
exciter

accelerometers and 
converter unites

exciter

AVIS oscillograph

pneumocontrol panel 

Fig. 7. The scheme of the experimental equipment.
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Since the third derivative coefficient magnitude in the regulator transfer function W regðpÞ is one
order lower than that of the second derivative, a supposition can be made that the regulator with
no third derivative shall not considerably worsen the control quality. In fact, in the system with a
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quasi-optimal regulator, calculations of hx2
0i and hu

2i with the truncated numeration polynomial,
show that the regulator modification does not worsen optimal criterion J which is within
11% . . . 20% margin. The corresponding dependence is shown in Figs. 4–6. Thus, such regulator
modification can be considered as acceptable and advisable from the engineering point of view.
It is then necessary to investigate how sensitive is the AVIS with a quasi-optimal regulator to

the vibro-isolated object parameter variations and to the disturbance characteristics. Consider the
situation when time constant T ¼ 1=oc of the AVIS device either increases or decreases by 50%,
while spectral power parameter b remains constant and also the case when parameter b increases
or decreases by 50%, while parameter T remains constant. The results of the analysis are
represented in Tables 1 and 2.
According to the studies outcomes the following conclusions can be reached: the system is

rather sensitive to variations of the time constant T and to the disturbance influence b. When the
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Fig. 8. Experimental results of the quasi-optimal AVIS: (a) output deviation of AVIS; (b) disturbance from the

foundation.
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AVIS device natural frequency oc decreases and b frequency decreases, then hx2
0i increases and,

consequently, greater control power is required. When b frequency and oc show at least 2.5–3 fold
difference then there is sharp decrease of the AVIS sensitivity to the parameter variations.
When parameter b remains constant, T and a influences on the AVIS operation quality were

shown to be insignificant.
Therefore, the synthesized quasi-optimal regulator provides the regulation quality parameters

close to the adopted optimal criterion.
4. Experimental results

Before conducting the real experiment, some preparations and preliminary experiments were
carried out. Vibro-isolated object was imitated as a rectangular container with the 1000 kg mass.
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Fig. 9. Experimental results of AVIS with PID controller: (a) output deviation of AVIS; (b) disturbance from the

foundation.
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Four controlled pneumosupports were located between the ground and the container at the
container’s corners (one at each corner). The controlled pneumosupport is represented in Fig. 2.
The scheme of the experimental equipment is shown in Fig. 7. An air pressure in the controlled
pneumosupport up to 5.9MPa was controlled with the pneumocontrol panel. The recording
equipment registered disturbances from foundation and displacement of the vibro-isolated object.
The recording equipment consists in the Bruel&Kjaer accelerometers and converter unites. The
exciter generating 2–15Hz harmonic motion frequencies disturbed the base. This frequency band
matches a real disturbance frequency.
Experimental results showed the following. The quasi-optimal AVIS provides 5–7 times

suppression of the disturbance (see Fig. 8). Fig. 9 shows the system’s dynamic behaviour when a
PID controller is applied. Vibration isolation performance is improved by 4–6 times. The transfer
function of the PID controller is

WPIDðpÞ ¼
br1p

2 þ br2pþ br3

ar0pþ ar1
. (46)
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Fig. 10. Experimental results of the quasi-optimal AVIS: (a) output deviation of AVIS; (b) impulse disturbance from

the foundation.
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Fig. 11. Experimental results of AVIS with PID controller: (a) output deviation of AVIS; (b) impulse disturbance from

the foundation.
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To compare the quality indices of the above-mentioned systems make use of the
mean square value from the output deviation. The results show that the quasi-optimal
system allows 1.5–2 times better characteristics than a system with PID controller.
When disturbance is an impulse signal, both systems suppress vibration effectively
(see Figs. 10 and 11). Vibro-isolated object displacements are 15–20 times less in
amplitude than those of the base. The impulse signal is simulated feasible switching of adjacent
devices.
According to these experimental data the following conclusions can be reached. The

disagreement between theoretical and experimental characteristics is quite acceptable, the
discrepancy being about 10–15%. Thus the quasi-optimal algorithm guarantees better
suppression disturbances than the PID control algorithm.
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5. Conclusions

This paper proposes an optimal and quasi-optimal control algorithm for the purposes of
protecting high precision facilities from foundation disturbances using AVIS. The algorithm
allows, during synthesis, the characteristics of disturbances to be taken into account. In addition
to the control signal restriction by the minimum control power, the maximum disturbance
suppression is achieved. The minimum control power provides minimum energy losses and attains
the lowest overheating condition. As a result the optimal AVIS operation is far more efficient.
Computation and experimental results confirm that there is a possibility to essentially reduce

the displacement of the vibro-isolated object.
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